Chemistry

- 1. From which of the following, the concept of zero point energy originates?
 - a) Heisenberg's uncertainty principle.*
 - b) de Broglie hypothesis
 - c) Schrodinger wave equation.
 - d) None of these.
- 2. The nineteenth electron in chromium atom has the following set of quantum numbers (n,l,m,s respectively)

 - a) 3,0,0,1/2 b) 4,-2,0,1/2
- c) 4,0,0,1/2 *
- d) 3,0,2,1/2.
- 3. The species which has nonlinear structure among the following is
 - a) I³⁻
- b) N³⁻
- d) CO₂.
- 4. If the ionization energy of hydrogen atom is 13.2eV, an electron in the fifth orbit of Ne⁹⁺ will be (in eV)
 - a) 13.2,
- b) 52.8*
- c) 39.6
- d) 26.4
- 5. Total number of sigma bonds present in a molecule of P₂O₅ is
 - a) 18,
- b) 12,
- c) 20
- d) 16*.
- 6. The ion among the following which is colored is
 - a) La^{3+} , b) Eu^{3+} ,*
- c) Gd^{3+} , d) Lu^{3+} .
- 7. According to Bohr's theory the angular momentum of an electron in the 5th
 - orbit is
- a) $5h/\pi$,
- b) $2.5h/\pi$,*
- c) $10h/\pi$,
- d) $25h/\pi$.

corner and two atoms on each body diagonal of the cube is	
a) 4, b) 6, c) 8, d) 9*.	
9. The crystal structure of Na ₂ O is	
a) antifluorite,* b) fluorite, c) rutile, d) antirutile.	
A Company of the Comp	
10. The quantum mechanical system for which the energy increases	
quadratically with the quantum number n is	
a) one dimensional harmonic oscillator, b) hydrogen atom,	
c) particle in a box,* d) rigid rotator.	
11. The uncertainty in position of an electron having mass 9.1X10 ⁻²⁸ g moving with a	
velocity of $3X10^4$ cm/sec accurate up to $0.011/$ will be (in cm)	
a) 7.68, b) 3.84, c) 1.94, d) 0.175.*	
12. Naturally occurring boron is $80/_5B^{11}$ and $20/_5B^{10}$. The atomic weight of boron is	
a)10.20, b)10.50, c)10.80,* d)11.20.	
13. An electron moving with a velocity v is found to have a certain value of de Broglie wavelength. The velocity to be possessed by the neutron to have the same de Broglie	
wave length is	
a) ν , b)1840 ν , c) 1840/ ν , d) ν /1840.*	
14. The periodic group consists entirely of metals is	
a) IIA,* c) IIIA, c) VIA, d) VIIA.	

8. The number of atoms present in a cube-based unit cell having one atom on each

a) Na, b) Se, c) Br, d) Kr.*
16. The electronic transition between Bohr's orbits in hydrogen responsible to the thir line in Balmer series is
a) 5 to 1, b) 5 to 2,* c) 4 to 2, d) 6 to 3.
17. The species among the following which is paramagnetic is
a) BN, b) N_2 , c) O_2 ,* d) O^{2-}
18. The species among the following which has neither oxidizing nor reducin
property is a)F ⁻ * b)HNO ₃ c)Fe ²⁺ d)MnO4 ⁻ .
19.Manganese(II) forms a complex with bromide ion. Its paramagnetism indicates five
unpaired electrons. The geometry of the complex will be
a) tetrahedral,* b) octahedral, c) trigonal bipyramid, d) square planar.
20. The total number of geometrical isomers possible for the coplanar complex [Pt(NH ₃)(NH ₂ OH)Py(NO ₂)]+ will be
a) 6, b) 4, c) 3,* d) 2.
21. The frequency of the light having wavelength 5000 A° will be (in THz)
a) 1666.7, b) 2500.0, c) 1199.2, d) 599.6.*.

15. The element among the following having the highest ionization potential is

22. Among the following species, the one which has the largest size is

a) Mg^{2+} ,	b) F ⁻ ,*	c) Ne,	d) Na ⁺ .
a_j wis,	$_{0}$,	0) 110,	a_{j} a_{j} a_{j} a_{j} a_{j} a_{j} a_{j}

23. A normal hydrogen molecule has a bond distance of $2.4A^{\circ}$. The bond distance for a hypothetical hydrogen molecule in which the electrons were each in second Bohr orbit will be (in A°)

a) 4.8, b) 9.6,* c) 13.2, d) 14.4.

24. The photoelectric emission from a surface starts only when the light is incident upon the surface has certain minimum

a) velocity, b) wave length, c) intensity, d) frequency*.

25. The electrons in two hydrogen atoms A and B move around the nucleus in circular orbits of radius r and 4r respectively. To complete one complete revolution the ratio of the times taken is

a) 1:8,* b) 1:4, c) 1:2, d) 2:1.

26. A solution of $MgCl_2$ in water has pH

a) 14, b) 7, c) <7,* d) >7.

27. The diatomic molecule among the following in which the shortest bond length is present is a) C_2 , b) N_2 ,* c) O_2 , d) F_2 .

28. The property possessed by the species O^{2+} according to MO theory is

a) bond order is 2.5,* b) lower stability than O_2 ,

c) diamagnetic character, d) presence of three unpaired electrons.

29. The set among the following consisting of all paramagnetic species is					
a)	B_2, N_2, O_2	,	b) B ₂ , O ₂ , I	72,	
c	B_2, O_2, N_0	O, *	d) Li ₂ , B ₂ ,	O ₂ .	
30. The com	pound amoi	ng the follo	wing showing	highest viscosity is	
a	glycerol,*	b) water,	c) ethanol,	d) ethylene glycol.	
				· 0),	
		-	-	n a one dimensional box of length L are	
given by	a) 2L/3n,	0) L/2II,	c) L/n,	d) 2L/n*.	
32. The bon	d order in N	O malagula	, ic		
a) 2.5, *	b) 3,	c) 3, d)	2.		
33. In an alk like:	taline mediu	ım a monos	accharide forr	ns enediols which may reduce metal ions	
a. Cu ²⁺	b. A	Ag ⁺	c. Fe ³⁺	d. all of the mentioned*	
34. The value Be ²⁺ is (in A		adius is 0.54	4 A°. The valu	e of the radius of the fourth orbit in	
a) 4.32,	b) 1	.08,	2) 8.64,	d) 2.16.*	
a) c		in which a	n electron trav	rels, b) a	
one-	-electron wa	ive function	ι, ·		
c) an observable property of the system,					
d) a	a Hermitian	operator.			

36. The orbit angular momentum of an electron of an element in 2s orbital is

	a) $h/2\pi$,*	b) $h/4\pi$,	c) h	/8π,	d) zero.	
37. In the brown ring compound, iron has the oxidation number						
	a) 0,	b) +1,*	c) +2,	d) +3.		
38. An	nong NO ⁺ ,	, NO and NO ⁻ ,	which one h	as the longe	est N—O bond length?	
a)]	NO⁻*,	b) NO,	c) NO ⁺ ,	d) same for	or all of them.	
39. Th	e hybridiz	ation state of X	Ke atom in X	KeO ₂ F ₂ is	-0	
a)	sp^3d^2 ,	b) dsp ³ ,	c) sp ³ d, *	d) d^2sp^3		
	_	NH ₃ , HF, and			t is highest for	
a) CH ₄	, b) NH	c) HF	F,* d) BeH ₂ .		
41. Th	e coordina	tion sphere [C	$r^{III}(NH_3)_2(H$	$[_2O)_2Cl_2]$ bea	ars a charge of	
a) 0,	b) +1,*	c) -1,	d) +2.		
42. The value of x in the carbonyl HxCr(CO) ₅ is						
a) 1, b) 2,* c) 3, d) 4.						
8	a) 1,	b) 2,* c)	3, d)) 4.		
		5				
43. Dil	porane is					
a) an electron deficient compound,* b) an electron excess compound,						
c) an electron precise compound, d) none of them.						
44. The most effective projectile in radioactive capture reaction is						
	a) ₂ He ⁴ ,	b) ₁ H ¹ ,		mma photor		
	u) 2110 ,	0, 111,	c) ga.	iiiiia piiotoi	i, u _{j i} ii .	

45. Bonding of F- with HF to form HF²⁻ is

a) hydrogen bond, * b) ionic bond, c) covalent bond, d) van der Waal's force.
46. An inner-metallic complex is
a) anionic, b) cationic, c) neutral,* d) zwitterionic.
47. Repulsion among orbital is maximum in
a) $lp - lp,*$ b) $bp - bp,$ c) $lp - bp,$ d)none of them.
48. The most stable electronic configuration of Fe ³⁺ has a total spin multiplicity of
a) 0, b) 2, c) 4, d) 6.*
49. ψ^2 represents
a) total probability, b) probability density,* c) probability, d) position.
50. The hybridization used by Te in forming the ion TeCl ₆ ²⁻ is a) 5s5p ³ 5d ² , b) 5s5p ³ 6d ² , c) 5d ² 6s6p ³ , d)6s5p ³ 5d ² .*
51. The most acidic among the following is a) $[Al(H_2O)_6]^{3^+}$, b) $[Ni(H_2O)_6]^{2^+}$, c) $Mn[(H_2O)_6]^{2^+}$, d) $[Na(H_2O)_n]^+$.
52. The shape of XeOF ₂ molecule is
a) trigonal bipyramid, b) square pyramid,* c) regular pentagon, d)tetrahedron.
53. The oxidation number of nitrogen in azide ion is
a) -1/3,* b)-1, c)-3, d) -5.
54. Which property of the elements does not depend upon the electronic

	a) magnetic,	b) nuclear,*	c) physical,	d) chemical.
55.	-	rmed in the reaction		
	a) PC14F,	b) PCl ₂ F ₃ ,	C) PF5,	d) PC13F ₂ .
56.	The number of	f unpaired electror	ns present in Ni ²	ion is
	a) 0, b) 2,	* c) 4,	d) 8.	60,
57.	The coordinati	on number of a T	i atom in rutile	is
	a) 10, b) 8,	, c) 6,* d) 4	1.	Mo.
58.	The total number	ber of valence elec	ctrons in carbona	te ion is
	a) 20, b) 22,	, c) 24,* d)	32.	
59.	The ion among	g the following wh	aich does not hav	ve S – S linkage is
	a) $S_2O_8^{2-},*$	$S_2O_6^{2-}, c) S_2O_6^{2-}$	O_5^{2-} , d) $S_2O_3^{2-}$	
60				
	. The wave nun arly	nber of the first fir	ie in Baimer seri	es of hydrogen spectrum is
Ç	a) 82,259 cm ⁻	¹ b) 82,000 cm ⁻¹	c)97,492 cm ⁻¹	d) 15,200 cm ⁻¹ *
61	. The solvent (c	dielectric constant	given in bracket) in which KI is most soluble is
	a) CCl ₄ (0),	b) C ₆ H ₆ (0),	c) methanol (32),* d) acetone (2).

62. The dipole moment of HBr is 0.78×10^{-18} esu cm and interatomic spacing

is1.41 A°. The is1.41 A°. The percent ionic character of HBr

configuration of the atoms?

a) 7.5,	b) 11.7,*	c) 15.2,	d) 27.3.

63. Injury by shot of a gun may cause poisoning by

a) Pb,* b) Hg, c) As, d) Fe.

64. P_4O_{10} molecule has both long and short P—O bonds. The number of such short bond(s) is

a) 1, b) 2, c) 3, d) 4.*

- 65. Burning of fossil fuels is the main source of which of the following pollutants?a) nitric oxide, b) sulphur oxide,* c) carbon monoxide, d) particulate matters.
- 66. Which one among the following will emit β -particle?

a) ${}_{1}H^{3}$, b) ${}_{6}C^{14}$, c) ${}_{19}K^{40}$, d) all of them.*

67. The general formula among the following which is associated with Fac-Mer isomerism is

a) M(AA')₂, b) M(AA)₃, C) MABCD d) MA₃B₃.*

68. Which one among the following bases will be suitable to generate acetylide anion from acetylene?

a) OEt⁻, b) OMe⁻, c)OH⁻, d) NH₂⁻.*

69. Addition of singlet carbene on cis -2-butene gives 1,2 dimethylcyclopropane with two methyl groups as
a) cis,* b) trans, c) both cis and trans, d) can't be predicted.
70. The product obtained on trapping of benzyne with furan on treatment with acid
gives a) 2-naphthol, b) 1-naphthol,* c) naphthalene, d) none of them.
71. The spin state of difluorocarbene in the ground state is
a) triplet, b) either singlet or triplet, c) singlet,* d) not known.
72. The stability order of alkyl carbocations is a) 3°> 2°> 10,* b) 1°> 2°> 3°, c) 20> 3°> 1°, d) all of equal stability.
73. The geometry of the carbanion ⁻ CH ₂ —NO ₂ is
a) tetrahedral, b) linear, c) pyramidal, d) planar trigonal.*
74. The reagent for epoxidising an alkene is a) KMnO ₄ , b) HCO ₃ H,* c) NaOH + H ₂ O ₂ d) BaO ₂ .
75. Which of the following will not give Cannizzaro reaction?
a) Ph-CHO, b) H ₂ CO, c) Me ₃ C-CHO, d) Cl ₃ C-CHO.*
76. Which of the following reagents can be used for purification of a ketone?
a) NH ₃ , b) HCN, c) NaHSO ₃ ,* d) NaHCO ₃ .
77. The reagent(s) used for converting 2-butyne to cis-2-butene is (are)
a) H_2 + Lindlar catalyst,* b) H_2 + Ni, c) Na + liq NH ₃ , d) H_2 + Pd.

78. The product formed when acetone is boiled with conc. H ₂ SO ₄ is					
a) mesityl oxide, b) mesitylene,* c) diacetone alcohol, d) none of them.					
79. DDT is prepared by the reaction between chlorobenzene (in the presence					
conc. H ₂ SO ₄) and another compound which is					
a) chlorine, b) lindane, c) gammaxene, d) chloral.*					
80. 1-Butene reacts with HBr in the presence of UV light to give					
a) 2-bromobutane, b) 1,2-dibromobutane, c) 1- bromobutane,*					
d) none of them.					
81. In the nitration of benzene with conc. HNO ₃ , the other reagent along with					
conc. HNO ₃ used is					
a) conc. H ₂ SO ₄ ,* b) anhyd. FeCl ₃ , c) UV light d) NaNO ₂ .					
82. The ester (+)- Ph-CO-OCHMePh on alkaline hydrolysis give the alcohol					
Ph-CHPh-OH, which has optical rotation					
a) (+), b) (-), c) (±),* d) can't be predicted.					
83. Acetyl nitrene reacts with water to furnish					
a) CH ₃ -COOH, b) CH ₃ -CONH ₂ , c) CH ₃ -CN d) CH ₃ -NHOH.*					
84. The one among the following which does not give haloform reaction is					
a) CH ₃ -CO-CH ₃ , b) CH ₃ -COOH,* c) C ₂ H ₅ -OH, d) CH ₃ -CHO.					

85. For allylic or benzylic bromination, the reagent to be used is						
a) Br ₂ in CCl ₄ , b) Br ₂ in acetic acid, c) NBS,* d) HBr.						
86. Boiling point of glycerol is higher than that of ethanol because of						
a) hydrogen bonding,* b) higher molecular weight,						
c) higher number of carbon atoms, d) none of them.						
87. Acetaldehyde on boiling reacts with chlorine to give						
a) CH ₃ -COCl, b) Cl ₃ C-CHO,* c) CH ₃ -CHCl ₂ , d) none of these.						
88. The stereochemistry of Br ₂ addition on cis or trans alkene is generally						
a) syn, b) anti,* c) both syn and anti, d) can't be predicted.						
89. The isomerism shown between cis- and trans- 2-butenes is						
a) structural, b) enantiomerism, c) diastereomerism,* d) none of them.						
90. The order of dipole moment of ethyl chloride (A), vinyl chloride (B) and						
Ethynyl chloride (C) is						
a) A <b<c, b)="" b<c<a,="" c)="" c<a<b,="" c<b<a.*<="" d)="" td=""></b<c,>						
91. All naturally occurring chiral amino acids have the configuration						
a) D b) L* c) mixture of D and L d) anyone of D and L.						
92. Cycloheptatrienyl cation is classified as						
a) nonaromatic, b) antiaromatic, c) homoaromatic, d) aromatic.*						

93.	93. A racemic modification is optically inactive because of							
	a) internal compensation,*			b) external	compensatio	n,		
	c) achiral natur	re,		d) none of t	these.			
94.	The isoelectric pl	H of asparti	c acid is					
	a) equal to 0,	b) >7,	c) <7,*	d) equal	to 7.			
95.	Amino acids exist	in the form	known as			$\mathcal{O}_{\mathcal{O}}$		
	a) nonpolar form	b) stag	gerd form	1	11			
(c) chelated form	d) zwit	terionic fo	orm.*				
96. In the	96. In the synthesis of the dye Bismarck brown, the main starting material is a) aniline, b) m-phenylenediamine,* c) benzaldehyde, d) phenol.							
97.	The alcohol obtain	ned in the C	annizzaro	reaction of	Ph-CDO wi	ith NaOH is		
	a) Ph-CD ₂ -OH	,* b) Ph	-CHD-OH	c) Ph-Cl	D ₂ -OD, d)	Ph-CHD-OD.		
98.	The alkene R-CH	= CH ₂ [-F	$R = CMe_3$	on hydrob	oration-oxid	lation gives		
	a) R-CHOH=CH ₂ , b) R-CH ₂ -CH ₂ OH,*, c) (R-CH ₂ -CH ₂) ₃ B							
	d) none of the				ŕ			
99.	When Ph-NH ₂ is l	heated with	CHCl ₃ an	d alcoholic	alkali, the p	oisonous		
	compound formed is							
	a) Ph-CN,	b) Ph-NH	(Cl, c)	Ph-NC,*	d) Ph-NH-	ОН.		

100. Among the following which one cannot reduce Tollens' reagent?	
a) glucose, b) fructose, c) sucrose,* d) arabinose.	
101. The major strain present in cyclopropane is	
a) torsional strain, b) steric strain, c) angle strain,* d) Pitzer	strain.
102. On reaction with KMnO ₄ trans-2-butene produces butane-1,2-diol w	hich
is	
a) meso b) dl * c) only d d) only l	
103. The reagent best suited for converting (S)-propylene oxide to	
(S)-propane-1,2 diol is	
a) aq. alkali* b) aq. Acid c) water d) none of these	
104. When a diazotized solution of aniline is added to a cooled solution	
of alkaline β -naphthol, a colored dye is obtained which is	
a) a diazo compound b) an azo compound *	
c) an aminoazo compound d) a diazoamino compound	
105. The reagent(s) for conversion of phenol to salicylaldehyde will be	
a) formaldehyde b) NaOH + CO ₂	
c) NaOH + salol d) NaOH + CHCl ₃ *	
106. The number of possible alkanes that could be formed in the reaction	
of two different alkyl chlorides with sodium in dry ether is	
a) 2 b) 3 * c) 1 d) 4	

	a) ethane	b) butane	c) suc	cinic anhydride	d) ethylene *
108. The	best suited re	action for the	prepara	tion of the alkane	e Me ₃ C-CH ₂ -CH ₃
is	a) Wurtz reac	etion, b) Ko	lbe elec	trolysis, c) Corey	-House synthesis,*
	d) Grignard r	eaction.			~()),
109. 2,3-1	Dimethyl -2-l	outene is stabl	lest amo	ng all isomeric Co	6 alkenes, which is
due to	the effect kr	nown as			
a) hyperconjuga	tion *	b) resonance	ee	0//	
c) inductive effec	t	d) mesome	ric effec	t	
		2	70.	•	
110. When	n R-CH ₂ -CO	OH is reacted	l with br	omine and a little	e red P, the product
forme	ed is a) R-C	H2-COBr		b) R-CHBr-CO	Br
	c) R-C	CHBr-COOH	*	d) R-CH ₂ -COO	Br
	>2				
111. Ord	er of the stre	ngth of the ac	ids benz	oic acid (I), salicy	ylic acid (II) and
2,6-dil	nydroxybenzo	oic acid (III) i	S		
	a) I > II > III	, b) II > II	I > I,	c) $III > II > I$, *	d) $II > I > III$.
112. The	preferred cor	nformation of	ethylene	e glycol is the gau	iche form, because
it is st	abilized by				
	a) van der W	aal's force l	o) intran	nolecular hydroge	n bonding,*

107. In Kolbe electrolysis of potassium succinate, the product formed at the

anode is

113. Which of the following would not form complex with boric acid?
a) ethylene glycol b) propane-1,2-diol
c) butane-2,3-diol d) butane-1,4-diol *
114. The reactivity of the carbonyl compounds acetaldehyde (I), formaldehyde (II)
and benzaldehyde (III) follows the order
a) $I > II > III$. b) $III > II > I$, c) $II > III > I$, d) $II > I > III.*$
115. Which of the following will not evolve CO ₂ from NaHCO ₃ ?
a) phenol,* b) 2,4,6-trinitrophenol, c) acetic acid, d) propenoic acid.
116. The number of possible stereoisomers that benzene hexachloride can have is
a) 2 b) 4 c) 6 d) 8 *
117. D-arabinose on step up gives a mixture of
a) D-glucose and D-gulose b) D-glucose and D-mannose *
c) D-mannose and D-gulose d) D-allose and D-idose
118. The percent content of carbon in anthracite coal is
a) 98 - 90,* b) 83 - 93, c) 70 - 73, d) 55 - 60.
a) 70 - 70, 0) 03 73, c) 70 73, a) 33 00.
119. When optically active 2-iodooctane is warmed with I ₂ in acetone, the
stereochemical consequence is
a) inversion b) racemization * c) retention d) can't be predicted.

d) none of these

c) dipolar force

120.	The rates of nyo	arolysis of C	лз(Сп ₂) ₃	$CH_2CI(1), CH_2CI(1)$	ла -5- Сп ₂	2CH ₂ CI (II),
	and CH ₃ -O-CH ₂ O	CH ₂ Cl (III)	with dilute	alkali follov	vs the orde	r
	a) $I > II > III$,	b) III	> II > I,	c) II > III >	I,* d) II	> I > III.
121.	The octane num	nber of gaso	line is mea	sured with re	espect to the	ne hydrocarbor
	taken as standard	l, which is				-4
	a) heptane,	b) isoo	ctane,*	c) octane,	d) isohept	ane.
122.	When allene is	reacted with	excess car	rbene (:CH ₂), the prod	luct is
	a) CH ₂ =C=C	$(CH_3)_2$, b) spiropent	ane,* c) C	CH ₃ -CH=C	=CH-CH ₃ ,
	d) none of the	ese.		0)		
123.	Reformatsky re	action is em	ployed to	synthesize		
	a) γ-hydroxy	vesters, b)	γ-hydroxy	vacids, c) β-	hydroxyes	sters*
	d) β-hydroxy	yacids.				
124	. Dehydrobromi	nation of Ph	-CD ₂ -CH ₂	Br by alkali	is about 6.	5 times
	faster than that of	of its protiun	n analogue	. The mecha	nism follo	wed is
1	a) E ₂ ,*	b) E ₁ cB,	c) E ₁ ,	d) mixe	d E2 and E	ılcB.
125	. The order for the	he rates of n	itration of	Ph-Cl (I), Pl	n-H (II) an	d Ph-NO2
	(III) will be as fe	ollows				
	a) I > II > III	I. b) III	>∐>I.	c) [[> [> II	I.* d) II	> III > I.

126. Friedel-Craft's alkylation of benzene with n-propyl chloride in the

a) n-Propylbenze	ene,	b) isopropy	ylbenzene,*
c) Ph- CH=CH-C	CH ₃ ,	c) Ph-CH ₂ -	-CH=CH $_2$.
127. When Me ₃ C-O-CH	I ₃ is reacted w	vith cold dilute l	HI, the iodide formed
a) Me ₃ C-I,*	b) CH ₃ -I,	c) mixture of	f CH ₃ -I and Me ₃ C-I,
d) no reaction tal	kes place.		C
128. Which of the follo	wing hydroca	arbons will have	e acidic hydrogen?
a) ethane,	b) ethene,	c) ethyne,*	d) 2-butyne.
129. The product obtain	ned on ozono	lysis of benzene	is
a) phenol,	b) glyoxal,*	c) acetone,	d) propionaldehyde
130. The states of hybri	idizations of (C-1 and C-2 in l	outa-1,2,3-triene are
a) sp ³ and sp ² ,	b) both sp ²	c) sp and sp	p^2 , d) sp ² and sp.*
131. Which of the follow		will not give pr	ecipitate with
ammoniacal silver n	itrate?		
a) 1-butyne,	b) 2-butyne	e,* c) 1-prop	yne, d) ethyne.
132. The most stable ca	ırbanion amoı	ng the following	g is
a) Allyl anion,		b) pentadie	enyl anion,
c) cyclopentadi	enyl anion, *	d) cyclohe	ptatrienyl anion.

presence of anhydrous AlCl₃ gives mainly

is
a) bakelite,* b) teflon, c) nylon, d) PVC.
134. The dimension of isothermal compressibility is
a) V^{-1} , b) P^{-1} ,* c) V , d) P .
135. For isothermal free expansion of an ideal gas, which of the following statement is incorrect?
a) $\Delta S = 0,*$ b) $\Delta U = 0,$ c) $\Delta T = 0,$ d) $q = 0.$
136. When is the change in enthalpy equal to the change in internal energy?
a) at constant pressure, b) at constant volume,*
c) at constant temperature, d) none of them.
137. A chemical reaction is exothermic and the heat evolved instantaneously given to the surroundings and the temperature of the system does not rise at all. Such a process is known as
a) adiabatic, b)isobaric, c) isochoric, d) isothermal.*
138. In which of the following cases does entropy decrease?
a) solid changing to liquid, b) polymerization,*
c) expansion of gas, d)dissolution of crystals.
139. Effect of temperature on ΔH is given by
a) Clausius-Clayperon equation, b) Gibb's-Duhem equation,
c) Kirchhoff's equation,* d) Berthelot equation.

133. The polymer obtained on polymerization of phenol with formaldehyde

140. In a reaction both ΔH and ΔS are greater than zero. In which of the following cases the reaction would be spontaneous?
a) H > Δ TAS, b) Δ H= T Δ S, c) T Δ S = - Δ H, d)T Δ S > Δ H.*
141. For the reaction A→ B+C, when the concentration of A is doubled, the rate becomes eight times. The order of the reaction is
a) 1, b) 2, c) 3,* d) 4.
142. The equation for the rate constant is given by $K = PZe^{-E/RT}$. A chemical reaction will proceed more rapidly if there is a decrease in
a) E,* b) P, c) T, d) Z.
143. The product ϵ .c.l (c = conc. , l = path length and ϵ = extinction coefficient) is known as
a) distribution coefficient, b) optical density,*
c) absorption coefficient, c) molar absorption coefficient.
7000
144. A catalyst increases the rate of a chemical reaction by
a) increasing the average KE of the molecules,
b) increasing the number of active molecules,
c) increasing the activation energy,
d) decreasing the activation energy.*
145. A molecule returns from excited singlet state to ground singlet state with emission of light.

The phenomenon is known as

- a) chemiluminiscence,
- b) fluorescence,*
- c) phosphorescence,
- d) scattering.

	a) T ³ ,*	b) T ² ,	c) T ⁻² ,	d) T ⁻³ .
147. Iodine	e is solid due to			
	a) Debye interac	tion,	b) van de	er Waal's interaction,
	c) London intera	ction,*	d) all of t	hem.
148. In the (a) of the u	nit cell is	losest packed ato		us of atoms in terms of the edge length d) $a/2\sqrt{2}$.*
149. Unit o	of ionic mobility is a) volt cm ⁻¹ sec,		sec ⁻¹ ,* c) cı	m ⁻² volt ⁻¹ sec, d)cm volt ⁻¹ sec ⁻¹ .
150. The equation (U ⁻) a	=	$\mathrm{nnce}(\Lambda)$ is related	d to the ionic	mobility of the cation (U ⁺) and the
	a) $\Lambda = U^+ + U^-$,	b) $\Lambda = U^{\dagger}F + U^{\dagger}$	F ,* $c) \Lambda = U$	$U^{+}/F + U^{-}/F, d) \Lambda = U^{+}/2 + U^{-}/2.$
	mf of a cell may be S electrode (R _L) a		rms of the re	duction potentials RHS electrode (R _H)
	a) $E_L - E_R$, b	$(E_R + E_L, c)$	$E_R - E_L, *$	d) E_R/E_L .
152. In the	radial distribution	of a 3d orbital th	he number of	f node(s) is/are

153. Bragg's law is best applicable for

a) 0,*

a) higher order of diffraction,*

b) 1,

c) 2,

- b) lower order of diffraction,
- c) any order of diffraction,
- d) none of them.

d) 3.

154. For A and B to form ar	ideal solution, which	ch of the followi	ng conditions should be satisfied?
a) $\Delta H_{\text{mixing}} = 0$,	b) $\Delta S_{\text{mixing}} = 0$,	c) $\Delta V_{\text{mixing}} = 0$	d) all of them.*
155. The order of a reaction concentrations should be	of which the rate co	onstant is equal to	o the rate of the reaction at all
a) 0,*	b) 1,	c) 2,	c) 3.
156. The unit of the rate of	a reaction is		
a) s ⁻¹ , b) 1	mol s ⁻¹ , c)mol I	-1 sec ⁻¹ ,* d)	mol ⁻¹ L sec ⁻¹ .
157. A radioactive decay for	llows the kinetics of	order	10.
a) 0, b)	1,* c) 2, d) co	mplicated.	
element will reduce to	a radioactive element b) 1/2 gm, c)	77	fter 520 days, one gram of the 1/16 gm.*
159. The rate constant of a	reaction depends up	on	
a) temperature	b) time of the	reaction, c) i	nitial concentration
of the reaction	n, d) extent of the	ne reaction.	
160. In the collision theory,	pre-exponential fact	or is	
a) T,*	b) T, c) T ² ,	d) none of t	hese.
161. In a cubic unit cell, the	total number of syn	nmetry is	
a) 20 b)	21 a) 22	d) 22 *	

162. The edge length of the unit cell of NaCl is 564 pm. If the size of Cl ⁻ ion is 181 pm, the size of Na ⁺ ion will be
a) 80 pm, b) 95 pm, c) 101 pm,* d) 167 pm.
163. Considering the cell potentials $E^o_{Mg2+/Mg} =$ -2.37 V and $E^o_{Fe3+/Fe} =$ -0.04 V, the best reducing agent would be
a) Fe, b) Mg,* c) Mg $^{2+}$, d) Fe $^{3+}$.
164. ZnO is yellow when hot, but white when cold because of
a) d-d transition, b) s-p transition, c) crystal defect,* d) scattering.
165. The number of atoms in a single primitive cubic unit cell is
a) 1,* b) 2, c) 4, d) 8.
166. Which of the following is an extensive property?
a) equivalent conductance, b) specific conductance,*
c) molar conductance, d) activity.
167. The quantum yield in primary process of a photochemical reaction is
a) 0, b) 1,* c) 2, d) 3.
168. Which of the following anions has the highest equivalent conductance at infinite dilution?
a) OH ⁻ ,* b) Cl ⁻ , c) NO ³⁻ , d) SO4 ²⁻ .
169. The energy of photon having frequency in the UV-Vis region is (in eV)
a) 1 to 10, b) 10^3 to 10^5 , c) 10^6 to 10^8 d) 10^{-2} to 10^{-4} .*

170. When a lead storage cell is charged	
a) H ₂ SO ₄ is formed,*	b) H ₂ SO ₄ is consumed,
c) PbSO4 is formed,	d) Pb is consumed.
171. In the potentiometric titration of AgNO ₃ , the	electrolyte used as a salt bridge is
	•
a) NaCl, b) KCl, c) CaC	12, d) NH4NO3.**
172. The logarithm of mean activity coefficient of strength (μ) as	an electrolytic solution decreases with ionic
a) $\mu^{1/2}$,* b) μ ,	c) $\mu^{3/2}$ d) μ^2 .
173. For a gas obeying the equation of state P(V-b	o) = RT, Joule-Thomson
coefficient is	0)
a)always zero, b) always negati	ive,* c) always positive,
d) alters from negative to positive	through zero.
174. Spontaneous adsorption of gases on solid sur	rface is always
a) endothermic, b) exothermic,*	
a) endomermic, b) exomermic,	c) isoentropic, a) isothermal.
175. Two moles of an ideal gas is expanded isoth	ermally at 20°C from
volume V to 2.5V. If the expansion i	s free, ΔS for the surrounding is
a) 15.2 JK ⁻¹ , b) -15.24 JK ⁻¹ ,	c) 7.26 JK-1 d) zero.*
176. The decrease in Gibb's free energy can be id	lentified with the
-	
a) total work, b) total heat, c	o total energy, a maximum
available work.*	

177.	For an isothermal reversible expansion, entropy of a system
	a) decreases,* b) increases, c) remains unchanged, d)none of them.
178.	Which of the following thermodynamic quantities is not a state function?
	a) heat,* b) enthalpy, c) entropy, d) Gibb's free energy.
179.	When T \rightarrow 0, for a perfect crystalline solid, which one of the following is
	true?
	a) $\Delta H > \Delta G$, b) $\Delta H < \Delta G$, c) $\Delta H = \Delta G$,* d) $\Delta H = \frac{1}{2} \Delta G$.
180.	For two moles of an ideal gas, the difference between Cp and Cv is
	a) 2R,* b) R, c) R/2, d) R ² .
181.	A Carnot engine is connected to two reservoirs of temperatures 300 K and
	400 K. The efficiency of this engine is
	a) 4/3, b) 1, c) 4/3,* d) 0.
182.	For a first order phase transition at the transition temperature, specific
	heat at constant pressure is
	a)infinity,* b) zero, c) same as both phases, d) none of them.
183.	According to Debye-Huckel theory of strong electrolytes, an ion moving
	in an atmosphere of oppositely charged ions experiences a drag. This
	effect is known as
	a) interionic effect, b) asymmetric effect,*

184.	4. "Only those radiations which are absorbed by the system can bring about							
	chemical change" – this is a statement of the							
	a) Lambert-Beer law, b) Grothus-Draper law,*							
	c) Einstein law, d) Photochemical equivalence law.							
185.	. pH of 10-9 (M) aqueous solution of hydrochloric acid at 298K is							
	a) 8.99, b) 9.99, c) 13.99, d) 6.99.*							
186.	Miller indices (h,k,l) represent							
	a) a set of parallel planes,* b) a particular crystal plane,							
	c) a transition vector with components h, k, l. d) none of them.							
187.	. Catalytic poisons act by							
	a) preferential adsorption on the catalyst surface,							
	b) chemical combination with any of the reactants,*							
	c) increasing the rate of backward reaction,							
	d) making the product chemically inactive.							
188.	. Average velocity of the molecules of a gas along a particular axis is							
	a) $(8RT/\pi M)^{1/2}$, b) $(5RT/\pi M)^{1/2}$, c) $(3RT/\pi M)^{1/2}$, d) zero.*							
189.	189. In polymer formation process, the enthalpy change and the entropy change							
	should be respectively							
	a) both less than zero,* b) both greater than zero,							
	c) zero and less than zero, d) greater than zero and zero.							

190.	For spontaneity at o	constant ter	nperature and	d volume,	$\Delta U_{T,V}$ sh	ould be
	a) 0,	b) >0,	c) <0,	k d)	can't be	predicted.
191.	What will be the ter	nperature o	f both reserv	oirs when	a Carnot	engine ceases
	to perform ($T_1>T_2$)?				
	a) (T ₁ .T ₂)	,*	b) $(T_1.T_2)^{3/2}$,	c) (T ₁ .	$(T_2)^{5/2}$,	d) none of the
192.	The number of inter	esection poi	nts between	an isothern	n and an	adiabate is
	a) 1,*	b) 2,	e) 3, d) 4			7.0
193.	The residual entrop	y for one n	nole of CDH	3 will be		
	a) Rln3,	b) Rln4,	c) Rlı	15,* d)	Rln2.	
194.	When a number of	ideal gases	are mixed to	gether at e	quilibriu	m point,
	ΔG_T will be	e				
	a) zero,	b) min	nimum,* o	e) maximu	m, d)	anything.
195.	In laminar flow of	gases, mole	cules reachin	ng a layer s	suffer las	t collision
	in a layer at	a distance	with respect t	to the mean	n free pat	h is
	a) equal,		th,			2/3 rd.*
	Find the amino acidetheonine	l that does o. Valine	not exhibit o	ptical acti c. Glycine	•	Alanine
197.	The Joule-Thomson	n effect sho	wn by a gas	obeying th	e equatio	on
	P(V-b) = RT	will be				

- a) no cooling,*b) no heating,c) no change in temperature,d) can't be predicted.
- 198. Which of the following wave functions are acceptable for a quantum mechanical system over the range $0 \le x \le 2\pi$?
 - a) tanx, b) sinx.cosx, c) sinx + cosx* d) sinx cosx.
- 199. An electron volt (eV) is the energy necessary to move an electric charge (e) through a potential of 1 eV. This energy in kCal/mole of electron will be a) 1.6X10⁻¹⁹, b) 23,* c) 96.4, d) 6.023.
- 200. The magnitude of charge on an electron is 4.8×10^{-10} esu . The magnitude of charge on the protons in the nucleus of a helium atom will be a) 4.8×10^{-10} esu, b) 4.8×10^{-8} emu, c) 9.6×10^{-10} esu,* d) 2.4×10^{-8} emu.