(PHYSICS)

Full Marks: 100 Time: 2 Hours

This booklet contains 50 Multiple Choice Questions (MCQs), each carrying 2 marks. For correct answer 2 marks will be awarded per question and for wrong answer 0.5 mark will be deducted per question.

Attempt all questions.

- 1. Electrical analogue of oscillator executing forced vibration is
 - a. L-C series circuit driven by an ac source.
 - b. L-C-R series circuit driven by an ac source.
 - c. L-C-R series circuit driven by a dc source.
 - d. L-R connected in parallel with C and driven by an dc source.
- 2. Two radioactive samples X (half life 3 years) and Y (half life 2 years) have been decaying for many years. Today the number of atoms in the sample X is twice the number of atoms in the sample Y. Both the samples had the same number of atoms
 - a. 4 months ago b. 5 years ago c. 6 years ago d. Never before
- 3. A piece of semi conducting material is introduced in a circuit. If the temperature of the material is raised, the circuit current will
 - a. increase b. remain the same c. decrease d. cease to flow
- 4. If $\{q, f(P)\}=\alpha f(p)$, where α is scalar and $\{\ ,\ \}$ denotes the Poisson bracket, then f(p) is
 - a. $e^{\alpha p}$ b. $e^{-\alpha p}$ c. $\alpha e^{-\alpha p}$ d. αe^{-p}
- 5. The frequency of an electron moving in first Bohr orbit is f. The frequency of an electron in n^{th} orbit is
 - a. fn^2 b. fn c. f/n d. f/n^2

6.	Consider a surface S defined by $S: x^2y + 2xz$ vector is then parallel to the surface S at the point	
	a. $6\hat{i} - 2\hat{j} - 5\hat{k}$	b. $6\hat{i} + 2\hat{j} + 5\hat{k}$
	c. $-6\hat{i} - 2\hat{j} + 5\hat{k}$	$\mathrm{d.} \ 6\hat{i} - 2\hat{j} + 5\hat{k}$

7. If M is a 2×2 matrix given by $\begin{bmatrix} 1 & \frac{1-i}{\sqrt{2}} \\ \frac{1+i}{\sqrt{2}} & 0 \end{bmatrix}$, then $\operatorname{Det}(\exp M) =$ a. e b. e^2 c. $2i\sin(\sqrt{2})$ d. $\exp(-2\sqrt{2})$

8. If the vectors $\hat{i} - \hat{j} + 2\hat{k}$ and $\hat{i} + \hat{k}$ form the two sides of a triangle. The area of the triangle is

a. 2 units b. $\frac{\sqrt{3}}{2}$ units c. $\frac{\sqrt{3}}{4}$ units d. $\frac{3}{2}$ units

9. Which one of the following molecules does not exhibit a rotational spectrum

a. H₂ b. CO c. HCL d. HBr

10. A wave of frequency ω and wave vector $(\hat{i} + \hat{j} + \hat{k})\frac{\omega}{c}$ is propagating through a medium. The phase difference between the points A (0,1,2) and B (2,1,0) is

a. $\frac{-4\omega}{c}$ b. $\frac{6\omega}{c}$ c. 0 d. $\frac{\omega}{c}$

11. The quantum statistics reduces to classical statistics under the following condition

a. $\rho \lambda^3 >> 1$ b. $\rho \lambda^3 \approx 1$ c. $\rho \lambda^3 << 1$ d. $\rho = \lambda^3$

Where ρ is the density of the system and λ being the thermal wavelength.

12. A faint star is just visible if 2000 photons/sec enter the eye. The amount of energy received by the eye per second (in watt) for the case sodium light of wavelength $\lambda=5890$ Å is

a. 6.76×10^{-16} watt b. 6.76×10^{-13} watt

c. 6.76×10^{-19} watt d. 6.76×10^{-17} watt

13.	The activity of a radioactive substance decreases to $1/64$ of its original value in 21 years. The half-life of the substance is				
	a. 6.5 years	b. 3.5 years	c. 5.5 years	d. 4.5 years	
14.	A particle has mo	pmentum p and kin	etic energy T . Its i	rest mass m_0 is given by	
	a. $\frac{p^2 c^2 - T^2}{2T c^2}$	b. $\frac{p^2 c^2 - T^2}{T c^2}$	c. $\frac{p^2 c^2 + T^2}{T c^2}$	d. $\frac{p^2 c^2 + T^2}{2T c^2}$	
15.	The 2's compleme	ent of binary no. 1	010 is		
	a. 0101	b. 0110	c. 1011	d. 1100	
16.	. Let A and B be the Einstein spontaneous and stimulated emission coeff respectively for a pair of level separated by a energy $h\nu$. The ratio A/B				
	a. does not deper	nd on ν	b. is pro	oportional to ν	
	c. is proportional	to ν^3	d. is pro	oportional to ν^{-3}	
17. The Fourier transform of a Gaussian function, $G(x)$ is $H(k)$. The function				H(k). The function $H(k)$	
	a. triangular function		b. parabolic function		
	c. sink function		d. Gau	ssian function	
18.	18. Collector current (I_c) is 1 mA for a transistor is CE mode, find the bas (I_B) if $\alpha = 0.998$				
	a. $2\mu A$	b. $4\mu A$	c. 6 <i>µ</i> A	d. $8\mu A$	
19.	The energy of the simple harmonic oscillator is $(n + \frac{1}{2})h\nu$ where $n = 0, 1, 2$ The partition function of the system is				
	a. $\frac{e^{\frac{h\nu}{2kT}}}{1-e^{\frac{h\nu}{kT}}}$	b. $\frac{e^{\frac{h\nu}{2kT}}}{1+e^{-\frac{h\nu}{kT}}}$	$C. \frac{e^{-\frac{h\nu}{2kT}}}{1+e^{\frac{h\nu}{kT}}}$	$d. \frac{e^{-\frac{h\nu}{2kT}}}{1-e^{-\frac{h\nu}{kT}}}$	
20.	The rms speed of a	an ideal-gas molecu	le is greater than its	s average speed by about	
	a. 15%	b. 12%	c. 9%	d. 6%	

	with integral spin, i	is	-			
	a. 0.150	b. 0.160	c. 0.170	d.0.180		
22.	An electron is trapped in a one-dimensional region of length 1.0×10^{-10} m (a typical atomic diameter). The energy of the ground state is					
	a. 37.6 eV	b. 3.76 eV	c. 0.376 eV	d. 376.0 eV		
23.	Constant binding e	nergy per nucleon	is a manifestation of			
	a. Saturation property of nuclear force b. Spin dependence of nuclear force					
	c. Charge independ	ence of nuclear for	d. None of	the above		
24.	Consider the follow	ing energies:				
	 minimum energy needed to excite a hydrogen atom energy needed to ionize a hydrogen atom energy released in U-235 in fission energy needed to remove a neutron from a C-12 nucleus Rank them in order of increasing value a. 1, 2, 3, 4 b. 1, 3, 2, 4 c. 1, 2, 3, 4 d. 2, 1, 3, 4 					
25.	Interference of light		, , ,	, , ,		
	a. the speed of ligh	t is very large	b. light is a trans	sverse wave		
	c. light is electroma	agnetic in characte	r d. light is a wave	phenomenon		
26.	An unpolarized beam of light has intensity I_0 . It is incident on a two polarized sheets. The angle between the axes of polarization of these sheets is θ . Find θ if the emerging light has intensity $I_0/4$:					
	a. $\cos^{-1}(1)$	b. $\cos^{-1}(\sqrt{1/2})$	$c.\cos^{-1}(1/2)$	d. $\cos^{-1}(1/4)$		

21. For the case in which five particles share 6 units of energy. The probability to observe a particle with 2 units of energy for indistinguishable quantum particles

27.	An ordinary differential equation is given by $x \frac{d^2y(x)}{dx^2} + (1-x)\frac{dy(x)}{dx} + ny(x) = 0$, where n is a non-negative integer. This differential equation is known as			
	a. Bessel differential ec. Laguerre differentia	-	b. Hermite differentia d. Legendre differentia	-
28.	~	~	n experiment with slit e observed pattern will	
	a. that the central ma	ximum is narrower.	b. more number of	of fringes.
	c. less number of fring	ges.	d. no diffraction p	oattern.
29.	O. Consider a system of two atoms, each having only 3 quantum states of energies 0 , E and $2E$. The system is in contact with a heat reservoir at temperature T . The partition function Z for the system, if the particles obey Fermi-Dirac statistics, is			
	a. $[1 + \exp(-E/kT) +$	$-\exp(-2E/kT)]^2$		
	b. $[1 + \exp(-E/kT) +$	$-\exp(-2E/kT)]^2/2$		
	c. $[1 + \exp(-E/kT) +$	$-\exp(-2E/kT)][1+\exp(-2E/kT)]$	$\exp(-2E/kT)$]	
	d. $[1 + \exp(-E/kT) +$	$-\exp(-2E/kT)]\exp(-2E/kT)$	-E/kT)	
30.	0. A plane surface with area $3.0 \ cm^2$ is placed in a uniform magnetic field that is oriented at an angle of 30° to the surface. If the magnetic flux through this area is $0.90 \ \text{mWb}$, what is the magnitude of the magnetic field?			
			6	. 4
	a. 6.0 T	b. 3.0 T	c. $\frac{6}{\sqrt{3}}$ T	d. $\frac{4}{\sqrt{3}}$ T
31.	At 0 kelvin, semicondo	actors are		
	a. perfect metals		b. perfect semico	nductors
	c. perfect semimetals		d. perfect insula	tors
32.	If θ be the paramagne temperature of a subs		and $\theta_{\rm f}$ be the ferromagnetic formagnetic and $\theta_{\rm f}$	gnetic Curie

a. $\theta < \theta_{\rm f}$ b. $\theta = 2\theta_{\rm f}$ c. $\theta = \theta_{\rm f}$ d. $\theta > \theta_{\rm f}$

33.	The average energy of N independent three dimensional harmonic oscillators at temperature T is (k: Boltzmann constant)				
	a. 3NkT/2	b. 3NkT	c.	3N(kT+1/2)	d. NkT
34.	P. A second spr	to a spring, a maring with the same	ne spring con	nstant is now con	nected between
	a. <i>P</i>	b. 2 <i>P</i>	c. $\sqrt{2}P$	d. $\frac{P}{2}$	
35.	The phenomenon	n responsible for l	light propaga	ation through opt	tical Fibre is
	a. diffraction			b total internal	reflection
	c. refraction			d. rectilinear p	propagation
36.	36. One mole of an ideal gas expands slowly and isothermally at temperatur until its volume is double. The change of entropy of this gas for this proce			_	
	a. R ln 2	b. $\ln 2/T$	c. 0	d. R	$2 \ln 2$
37.	A particle of mass m is constrained to move on the plane curve $xy = C(C > 0)$ under gravity (y-axis vertical). The Lagrangian of the particle is given by				- '
	a. $\frac{1}{2}m\dot{x}^2(1+\frac{C^2}{x^4})$	$+\frac{mgx}{x}$		b. $\frac{1}{2}m\dot{x}^2(1+\frac{C^2}{x^4})$	$-\frac{mgx}{x}$
	c. $\frac{1}{2}m\dot{x}^2(1+\frac{C^2}{x^2})$	$+\frac{mgx}{x}$	•	d. $\frac{1}{2}m\dot{x}^2(1+\frac{C^2}{x^2})$	$-\frac{mgx}{x}$
38.	8. In a Young's double slit experiment the slit separation is made double. maintain the same fringe spacing on the screen, the screen to slit distance must be changed to				
	a. D/2	b. 2D	c. $D/\sqrt{2}$	d. v	$\sqrt{2}D$
39.	The minimum nu coverage is:	umber of geostatio	nary satellite	es needed for unin	terrupted global
	a. 2	b. 3	c. 4	d. 6	
40.	The eigenvalues	of an anti-Hermit	tian operator	are	
	a. realc. purely imagin	ary or equal to ze	ero	b. complex d. none of the	se

41.	. The reciprocal lattice of a two dimensional hexagonal lattice is a				
	b. bcc latticec. fcc lattice	e with same orientation with the but rotated 30° with	-		
42.	2. The Peltier coefficient π at temperature T related to the thermo-emf ϵ by the relation				
	a. $\pi = -T \frac{d^2 \epsilon}{dT^2}$ b.	$\pi = -T^2 \frac{d^2 \epsilon}{dT^2}$ c. π	$=T\frac{d\epsilon}{dT}$ d. none of	these	
43.	The intensity of rac	liation of an oscillatin	g electric dipole is		
	a. maximum along its axis b. maximum in its equatorial plane c. minimum at an angle 45° with its axis d. the same in all directions				
44.	4. Consider X-ray diffraction from a crystal with a face centered cubic (fcc) lattice. The lattice plane from which there is NO diffraction peak is				
	a. (212)	b. (111)	c. (200)	d. (311)	
45.		pushes a moving object vards the ——in the S			
	a. left, left	b. left, right	c. right, left	d. right, right	
46.	6. A bottle is floating upright in a large bucket of water. In equilibrium it is submerged to a depth d_0 below the surface of the water. If it is pushed down to a depth d ($d > d_0$) and released, it will execute simple harmonic motion. The time period of the oscillations of the bottle is				
	a. $2\pi\sqrt{\frac{d}{g}}$ b	$2\pi\sqrt{\frac{d_0}{g}}$ c. 2	$2\pi\sqrt{\frac{d-d_0}{g}} \qquad \qquad \text{d. } 2\pi$	$\sqrt{rac{d+d_0}{g}}$	
47.	. An electron is introduced in a region of uniform electric and magnetic fields at right angles to each other (let us say $\mathbf{E} = E\hat{i},\mathbf{B} = B\hat{k}$). For what initial velocity will the electron move with constant velocity (both the direction and the magnitude of velocity are constant)?				
	a. $\frac{E}{B}\hat{j}$	b. $-\frac{E}{B}\hat{j}$	c. $\frac{B}{E}\hat{j}$	d. $-\frac{B}{E}\hat{j}$	

48. A classical ideal gas of atoms with mass m is confined in a 3-D potential $V = V(x, y, z) = \frac{\lambda}{2}(x^2 + y^2 + z^2)$ at a temperature T. If k_B denotes the Boltzmann constant, then the root mean square (RMS) distance of the atoms from the origin is

a. $\sqrt{(\frac{3k_BT}{\lambda})}$ b. $\sqrt{(\frac{3k_BT}{2\lambda})}$ c. $\sqrt{(\frac{2k_BT}{3\lambda})}$ d. $\sqrt{(\frac{k_BT}{\lambda})}$

49. A particle moves under the influence of central force in an orbit given by $r = k\theta^4$, where k is a constant , r is the distance from the origin. It then follows that the angle θ varies with time t as

a. $\theta \propto t^{1/9}$

b. $\theta \propto t^{1/8}$ c. $\theta \propto t^{1/7}$

d. $\theta \propto t^{1/6}$

50. In an electromagnetic field, which one of the following remains invariant under Lorentz transformation?

a. $\vec{E} \times \vec{B}$

b. $E^2 - c^2 B^2$ c. B^2

d. E^2