SECTION - A PHYSICS

The velocity 'v' of a particle at time 't' is given by $v=at+\frac{b}{t+c}$, the dimensions of (abc) is 't' সময়ে একটি কণার বেগ v', $v=at+\frac{b}{t+c}$ ঘারা দেওয়া হয়, (abc) এর মাত্রা 1.

A) [L²T⁻¹]

B) [LT"]

C) [LT2]

D) [LT]

2. A particle is describing a motion on x - y plane such that its coordinates evolve with time (t) according to following relations: $x(t) = t \cos(t)$ and $y(t) = t \sin(t)$. Trajectory of the particle is,

A) A circle

B) An ellipse

C) A spiral inward

A spiral outward

একর্টিকণা x-y সমতলে একর্টি গতিকে বর্ণনা করছে যাতে এর স্থানাঙ্কগুলি নিম্নলিখিত সম্পর্ক অনুসারে সময়ের (t) সাথে বিবর্তিত হয়: $x(t) = t \cos(t)$ এবং $y(t) = t \sin(t)$ । ফণার গতিপথ হল,

A) একটি বৃত্ত

B) একটি উপবন্ত

C) ভিতরের দিকে একটি সর্পিল

- D) বাইরের দিকে একটি সর্পিল
- 3. A bicycle is moving with speed of v as shown in the figure. Consider three points A, B and C on its rear wheel. If, linear velocity of these points are v_A , v_B and v_C respectively, then, which one of the following options is correct? চিত্রে দেখানো হিসাবে একটি সাইকেল v গতিতে চলছে। এর পিছনের চার্কার তিনটি পয়েন্ট Λ, B এবং C বিবেচনা ফরুন।

যদি, এই বিন্দুগুলির রৈখিক বেগ যথাক্রমে v_A, v_B এবং v_C হয়, তাহলে, নিম্নলিখিত বিকল্পগুলির মধ্যে কোনটি সঠিক?

A) $v_A = v_B = v_C = v$ S) $v_A = 0$ and $v_B = v_C/2 = v$

B) $v_C = -v_A = v$ and $v_B = 0$ D) $v_B = v_C = -v_A = v$

The equation of a wave is given by $y = A\sin\frac{\omega}{v}(k-Ct)$, where ω is the angular velocity, x is the length 4. and v is the linear velocity. The dimension of C is? একটি তরঙ্গের সমীকরণ $y=Asinrac{\omega}{v}(k-Ct)$ দ্বারা দেওয়া হয়, যেখানে ω হল কৌণিক বেগ, x হল দৈর্ঘ্য এবং v রৈখিক বেগ। C এর মাত্রা কত?

A) LT

B) T^{-1}

LT-1

A body is moving with constant speed along a straight line parallel to x axis. Its angular momentum about the 5. origin is

A) zero

- non-zero constant
- C) increases

D) decreases

একটি বস্তুকনা x অক্ষের সমান্তরাল সরলরেখা বরাবর ধ্রুব গতিতে চলে। মূল বিন্দুর সাপেক্ষ্যে এর কৌণিক ভরবেগ

A) শৃন্য

B) অ-শৃন্য ধ্রুবক

C) বৃদ্ধি পায়

D) হ্রাস পায়

	•						
6.		r expansion of an anisotroical expansion of the sol	opic solid along three recta id is	angular axes in the solid ar	$e \alpha_x, \alpha_y$ and		
	$A \int \alpha_x + \alpha_y + \alpha_z$		C) $\frac{\alpha_x + \alpha_y + \alpha_z}{3}$	D) None			
	তিনটি আয়তক্ষেত্রাকার অক্ষ বরাবর একটি অ্যানিসোট্রপিক কঠিনের রৈখিক প্রসারণের সহগ <i>হল α_x, α_y এবং α_z</i> । কঠিন পদার্থের ঘন ক্ষেত্র সম্প্রসারণের সহগ						
	A) $\alpha_x + \alpha_y + \alpha_z$	B) $\left[\alpha x \ \alpha y \ \alpha z\right]^{\frac{1}{3}}$	C) $\frac{\alpha_x + \alpha_y + \alpha_z}{3}$	D) কোনোর্টিই ন	য়		
7.	Temperature of an ideal gas changes from 27°C to 927°C. The r.m.s. speed of its molecules becomes A) Four times D) Thrice একটি আদর্শ গ্যাসের তাপমাত্রা 27°C খেকে 927°C এ পরিবর্তিত হয়। গ্যাসের অণুর গতি হয়ে যায়						
	A) চার গুন	৳) দুই গুন	C) অর্ধেক	D) তিন গুন			
8.	A) Towards the centre C) Opposite to the di	e of the circle rection of motion ার পথে ধ্রুব গতিতে চলে, তখ	nstant speed, what is the din B) Tangential to the D) Parallel to the rad নে তার ত্বরণের দিক কী? B) বৃত্তের স্পর্শক বরাবর D) ব্যাসার্ধের সমান্তরাল	circle lius			
9.	A monatomic gas at a pressure P, having a volume V expands isothermally to a volume 2V and then adiabatically to a volume 16V. The final pressure of the gas is (take $\gamma = 5/3$): P চাপে একটি এক পারমানবিক গ্যাসের, আয়তন V থেকে সমোজ্ঞ প্রক্রিয়ায় আয়তন 2V এবং তারপরে তাপরুদ্ধ প্রক্রিয়ায় 16V আয়তনে প্রসারিত হয়। গ্যাসের চূড়ান্ত চাপ হল ($\gamma = 5/3$ ধরুন):						
	A) 64P	B) 32P	Ø) P/64	D) 16P	6 .		
10.	The ratio of frequencies of two simple pendulums is 2 : 3, then ratio of their lengths is দুটি সরল দোলকের কম্পাঙ্কের অনুপাত হল 2 : 3, তারপর তাদের দৈর্ঘ্যের অনুপাত হল,						
	A) $\sqrt{2}:\sqrt{3}$	B) √3 : √2	99:4	D) 4:9			
11.	The respective numbers of the significant figures for the numbers 28.028, 0.0004 and 1.2×10^{-3} are: 28.028, 0.0004 এবং 1.2×10^{-3} সংখ্যাগুলির ক্ষেত্রে উল্লেখযোগ্য সংশ্লিষ্ট সংখ্যা হল:						
	A 5, 1, 2	B) 5, 1, 3	C) 4, 4, 2	D) 5, 5, 2			
12.	is –		y y = 15cos (660πt – 0.0 60πt – 0.02πx) সেমি দ্বারা				
	A) 330 Hz	B) 342 Hz	C) 365 Hz	D) 660 Hz	1149 464-		
13.	What is the percentage error involved in time period of oscillation of a simple pendulum if errors involved in length measurement is 1% and in gravitational acceleration it is 2%: একটি সরল দোলকের দোলনের সময়কালে কত শতাংশ ক্রটি জড়িত থাকবে যদি দৈর্ঘ্য পরিমাপে জড়িত ক্রটি 1% হয় এবং মহাকর্ষীয় ত্বরণে জড়িত ক্রটি 2% হয়:						
	1.5%	B) 2%	C) 3%	D) 0.5%			

14.	A capacitor is charged with a battery and energy stored is U . After disconnecting the battery another capacit of the same capacity is connected in parallel with it. The energy stored in each capacitor is, একটি ক্যাপানিটর একটি ব্যাটারি দিয়ে চার্জ করা হলে তার সঞ্চিত শক্তি হয় U । ব্যাটারিটির সংযোগ বিচ্ছিন্ন করার পর এব ক্ষমতার আরেকটি ক্যাপানিটর এর সাথে সমান্তরালভাবে সংযুক্ত করা হয়। প্রতিটি ক্যাপানিটরে সঞ্চিত শক্তি হবে A) $U/2$						
	A) 0/2	B) U/4	C) 2 <i>U</i>	D) 4 <i>U</i>			
15.	If a wire is cut into two equal pieces keeping the applied force constant is A) Young's modulus becomes half B) Force constant becomes doubled C) Force constant becomes half D) Young's modulus becomes doubled একটি তারকে প্রযুক্ত বল খ্রির রেখে দুটি সমান টুকরো করে কাটা হলে তার- A) ইয়াং গুনাঙ্ক অর্থেক হয়ে যায় D) বল ধ্রুবক অর্থেক হয়ে যায় D) ইয়াং গুনাঙ্ক বিগুণ হয়ে যায়						
16,				The same force between two protons ্যাকা দুটি প্রোটনের মধ্যে সেই একই বল D) F/1836			
17.	The state of the s	(/)	n lift descending with an accele টি সরল দোলকের সময়কাল হবে- (eration g, where g is the gravitational যেখানে g হল মহাকর্ষীয় ত্বরণ) D) Infinity			
18.	What is the direction of the magnetic field inside a solenoid when an electric current flows through it, A) Along the axis of the solenoid B) Anti-clockwise C) Alternating direction D) No magnetic field is produced inside a solenoid একটি সোলেনয়েডের ভেতর দিয়ে বৈদ্যুতিক প্রবাহ প্রবাহিত হলে চৌম্বক ক্ষেত্রের দিকটি কী? A) সোলেনয়েডের অক্ষ বরাবর B) ঘড়ির কাঁটার বিপরীতে C) সময়ের সাথে দিক পরিবর্তনশীল D) সোলেনয়েডের ভিতরে কোন চৌম্বক ক্ষেত্র তৈরি হয় না						
19.	The electrostatic potential associated with the electric field $\vec{E}=(\ell y^2+\int 2xy)$ is given by, স্থির তড়িৎ বিভব $E^{-1}=(\ell y^2+\int 2xy)$ দ্বারা দেওয়া বৈদ্যুতিক ক্ষেত্রের সাথে যুক্ত $V=-xy^2+const$ B) $V=-(2xy+y^2)+const$ D) $V=-\frac{x}{y^2}+const$						
20.	lf the kinetic energy of a free electron doubles, it's de-Broglie wavelength changes by a factor, যদি একটি মুক্ত ইলেক্ট্রনের গতিশক্তি বর্ধিত হয়ে দ্বিগুণ হয়, তবে এটি ডি-ব্রোগলি তরঙ্গ দৈর্ঘ্য একটি ফ্যাক্টর দ্বারা পরিবর্তি হয়,						
	A) 2	B) 1/2	C) √2	D 1/√2			
				V 1-112			
				16.75			

 $\sqrt{1}$ 1. A long solenoid having 1000 turns per unit length, relative permeability of medium inside it is 500, current flowing in the solenoid is 5A, then find the magnetic field (B) inside the solenoid ? $[\mu_0 = 4\pi \times 10^{-7} N/A^2]$ একটি দীর্ঘ সলিনয়েডের প্রতি ইউনিট দৈর্ঘ্যে 1000 টি পাক রয়েছে। এটির ভিতরের মাধ্যমটির আপেক্ষিক ভেদ্যতা 500, সলিনয়েডে প্রবাহিত কারেন্ট 5A, তাহলে সলিনয়েডের ভিতরে চৌম্বক ক্ষেত্র (B) কত? $[\mu_0 = 4\pi \times 10^{-7} \frac{N}{A^2}]$

A) $\pi x 10^{-2} T$

B) πT

C) $\pi \times 10^{-3} T$

D) $5\pi T$

 β 2. If radius of the $^{27}_{13}Al$ nucleus is estimated to be 3.6 fermi then the radius of $^{125}_{52}Te$ nucleus be nearly,

A) 8 fermi

B) 6 fermi

C) 5 fermi

D) 4 fermi

যদি $^{27}_{13}Al$ নিউক্লিয়াসের ব্যাসার্ধ 3.6 ফার্মি হয় তাহলে $^{125}_{52}Te$ নিউক্লিয়াসের ব্যাসার্ধ প্রায়,

A) 8 ফার্মি

B) 6 ফার্মি

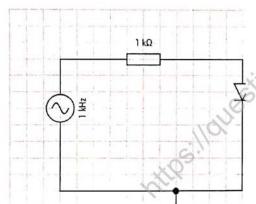
C) 5 ফার্মি

D) 4 ফার্মি

Three capacitors of capacitances $2\mu F$, $3\mu F$ and $6\mu F$ are connected in parallel with a cell of emf 6V. Then charge on the equivalent capacitor is

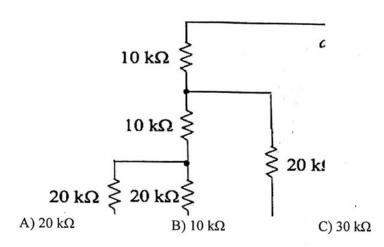
2μF, 3μF এবং 6μF ধারকত্বের তিনটি ক্যাপাসিটর 6Vemf এর একটি কোষের সাথে সমান্তরাল ভাবে সংযুক্ত। তারপর সমতুল্য ক্যাপাসিটরের উপর চার্জ হয়

A) $11\mu C$


B) $22\mu C$

66µC

D) 121µC


1 If input voltage, V_{in}=5 sin (ωt) where ω is the angular frequency then (Assume ideal diode approximation, i.e., cut-in voltage of the diode is 0V):

যদি ইনপুট ভোল্টেজ হয়, V_{in}=5 sin (ωt) *যেখানে* ω হল কৌণিক বেগ তাহলে (অনুমান কর আদর্শ ডায়োডের, অর্থাৎ, ডায়োডের কাট-ইন ভোল্টেজ হল 0V):

- A) During positive half cycle voltage drop across the diode = Vin
- B) During negative half cycle voltage drop across the diode = 0 V
- C) During positive half cycle voltage drop across the resistance = 0 V
- Dr During negative half cycle voltage drop across the diode = Vin
 - A) ধনাত্মক অর্ধচক্রের সময় ডায়োডে ভোল্টেজ ড্রপ = V_{in}
 - B) ঋণাত্মক অর্ধচক্রের সময় ডায়োডে ভোল্টেজ ড্রপ = 0 V
 - C) ধনাত্মক অর্ধচক্র ভোল্টেজের সময় রেজিস্ট্যান্স জুড়ে ড্রপ = 0 V
 - D) ঋণাত্মক অর্ধচক্রের সময় ডায়োডে ভোল্টেজ ড্রপ = V_{in}

The equivalent resistance between a and b must be : a এবং b এর মধ্যে সমতুল্য রোধ হতে হবে:

D) 13 kΩ

C) 30 kg